
Fundamentals of Programming

Languages

PLs Typing Systems
Lecture 08

conf. dr. ing. Ciprian-Bogdan Chirila

November 15, 2022

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 1 / 69

Lecture outline

C Typing System
Predefined types
Enumeration type constants
Structured data types
Pointers
Recursive structures
Type equivalence

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 2 / 69

Lecture outline

Lisp typing system
Simple predefined types
Lists
Vectors and matrixes
Vectors and bit matrixes
Character strings
Type equivalence
Subtypes

Comparisons

Strongly typed PLs

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 3 / 69

C typing system

PLs Typing Systems
1 C typing system

Predefined types
Enumeration type constants
Structured data types
Pointers
Recursive structures
Type equivalence

2 Python typing system
Predefined types
Strings
Booleans
Lists
Tuples
SetsPLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 4 / 69

C typing system

The C typing system

Predefined types

Enumeration constants
Structured data types

Array
Structure
Union

Pointers

Recursive structures

Type equivalence

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 5 / 69

C typing system Predefined types

Predefined types

char – a byte for the local set of characters
int – the set of integers on the host machine

short int usually on 16 bits
long int on at least 32 bits

length(short) 16 bits

length(short)<= length(int)<=length(long)

signed and unsigned can be applied to char or int

unsigned char 0..255

signed char -128..+127

float, double

<limits.h> <float.h>
PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 6 / 69

C typing system Enumeration type constants

Enumeration constants

enum boolean {NO,YES};

enum days {MO=1,TU,WE,THU,FRI,SAT,SUN};

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 7 / 69

C typing system Enumeration type constants

Arrays

General form
element type array name[constant expression]
Array size > 0

Example
v[10] – 10 integer array
Indexes start at zero
First element v[0]
Last element v[9]

Initialization
x[]={1,2,3};

the array size must be known at compile time
C arrays are static arrays

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 8 / 69

C typing system Enumeration type constants

Multidimensional arrays

Is an array of arrays
int mat[10][10]

Matrix with 10 lines and 10 columns
The element at (i,j) will be accessed like mat[i][j] and
not mat[i,j] like in other PLs

array formal parameters can be declared
incompletely without specifying the first dimension

int f(char l[],int m[][10]);

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 9 / 69

C typing system Enumeration type constants

Multidimensional arrays

The effective dimensions of arrays can be specified
at function call time
Functions can have a greater degree of generality
than Pascal where

formal parameter size and actual parameter size must be
equal

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 10 / 69

C typing system Structured data types

Structures

Implement in C the Cartesian products

struct point

{

int x;

int y;

};

can be copied by an assignment

struct point origin={0,0};

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 11 / 69

C typing system Structured data types

Structures

Field access
struct point p;

p.x or p.y

Can be returned by functions
struct point f(int x, int y) { }

Can be nested
struct rectangle

{

struct point p1;

struct point p2;

};

The access can be nested
struct rectangle r;PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 12 / 69

C typing system Structured data types

Unions

Implement variable reunions

union

{

int i;

float f;

char c;

} u;

u can be an integer or a float or a char

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 13 / 69

C typing system Structured data types

Unions

Selection
u.i, u.f, u.c

Can be nested with other unions, structures or
arrays
In memory representations

all have a a zero memory offset from the starting address
At one moment only one representation is available

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 14 / 69

C typing system Structured data types

Unions

No type checking is made

All responsibility is on programmers shoulder

Selecting a bad variant could cause severe
programming errors

The permitted operations are those from the sets

Can be initialized with a value of the first variant
type (integer for u)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 15 / 69

C typing system Pointers

Pointers

a pointer declaration must use the referred type
int x=1, y;
int *p; /* p is a pointer to an integer */
void *p1; /* can store any type of pointer */

May store object addresses
p=&x;

To access the object referred by the pointer
is called de-referentiation
y=*p; /* y gets value 1*/
p=0; / x gets value 0 */

Synonyms can be created with the known
consequences

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 16 / 69

C typing system Pointers

Pointers

Allow direct access to an argument memory location

void exchange1(int x, int y) /*wrong*/

{

int aux;

aux=x; x=y; y=aux;

}

exchange1(a,b);

/*exchanges only copies of a and b*/

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 17 / 69

C typing system Pointers

Pointers

void exchange2(int *x, int *y)

{

int aux;

aux=*x; *x=*y; *y=aux;

}

exchange2(&a,&b); /*correct call*/

/*exchanges the values of a and b*/

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 18 / 69

C typing system Pointers

Pointers

can be used together with arrays

int a[10];

int *pa;}

pa=&a[0];

/*pa will hold the address of a[0]*/

The value of an array is also the value of the first
element of the array

a and pa have the same values

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 19 / 69

C typing system Pointers

Pointers

*(pa+i) is the content of a[i]

*(pa+i) is equivalent with a[i]

(pa+i) is equivalent with &a[i]
When an array is transmitted to a function

Only the first element address is transmitted
The formal parameter is actually a pointer
Acts as a variable which contains an address

int f(char s[]) { . . . }

int f(char *s) { . . . }

The two forms are equivalent

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 20 / 69

C typing system Pointers

Pointer arithmetic

Allowed operations
Assigning pointers of the same type
Adding or subtracting a pointer with an integer
Subtracting or comparing two pointers referring the
elements of the same array
Assigning or comparing with NULL (zero) or 0

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 21 / 69

C typing system Pointers

Theoretical type compatibilities

Illegal operations
Adding two pointers
Multiplying or dividing pointers
Bit shifting or mask application
Adding pointers with real values

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 22 / 69

C typing system Pointers

Pointers to functions

Allowed in C

Can be assigned

Can be set in arrays

Can be send as parameters to functions

Can be returned as values from functions

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 23 / 69

C typing system Pointers

Dynamic memory allocation and relocation

Dynamic allocation of anonymous objects of
specified size

malloc(...);

calloc(...);

realloc(...);

Releases the allocate memory
free()

Memory releases can create fake references

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 24 / 69

C typing system Recursive structures

Recursive structures

Based on pointers

Allow describing lists or trees

struct node

{

type info;

struct node *left;

struct node *right;

}

recursive structures must use pointers

a type can not contain its own instantiation

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 25 / 69

C typing system Type equivalence

Type equivalence

Based on structural equivalence
Exceptions

struct
union

are different types even they have the same structure

type conversions are allowed through casting

(type) expression

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 26 / 69

Python typing system

PLs Typing Systems
1 C typing system

Predefined types
Enumeration type constants
Structured data types
Pointers
Recursive structures
Type equivalence

2 Python typing system
Predefined types
Strings
Booleans
Lists
Tuples
SetsPLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 27 / 69

Python typing system Predefined types

Python Typing System

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 28 / 69

Python typing system Predefined types

Predefined types

x = 5

print(type(x))

<class ’int’>

x = "Hello World" <class ’str’>

x = 20 <class ’int’>

x = 20.5 <class ’float’>

x = 1j <class ’complex’>

x = ["apple", "banana", "cherry"] <class ’list’>

x = ("apple", "banana", "cherry") <class ’tuple’>

x = range(6) <class ’range’>

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 29 / 69

Python typing system Predefined types

Predefined types

x = {"name" : "John", "age" : 36} <class ’dict’>

x = {"apple", "banana", "cherry"} <class ’set’>

x = frozenset({"apple", "banana", "cherry"})

<class ’frozenset’>

x = True <class ’bool’>

x = b"Hello" <class ’bytes’>

x = bytearray(5) <class ’bytearray’>

x = memoryview(bytes(5)) <class ’memoryview’>

x = None <class ’NoneType’>

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 30 / 69

Python typing system Predefined types

Casting

integers

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

floats

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 31 / 69

Python typing system Predefined types

Casting

strings

x = str("fcpl") # x will be ’fcpl’

y = str(2) # y will be ’2’

z = str(3.0) # z will be ’3.0’

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 32 / 69

Python typing system Strings

Strings

print("Hello FCPL")

print(’Hello FCPL’)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 33 / 69

Python typing system Strings

Multiline Strings

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

a = ’’’Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.’’’

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 34 / 69

Python typing system Strings

Slicing Strings

b = "Hello, World!"

print(b[2:5])

#llo

print(b[:5])

#Hello

print(b[2:])

#llo, World!

print(b[-5:-2])

#orl

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 35 / 69

Python typing system Strings

Modifying Strings

s=" Hello FCPL "

s.upper()

s.lower()

s.strip()

s.replace("H", "J")

s.split(",")

a="Alfa"

b="Romeo"

c=a+" "+b

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 36 / 69

Python typing system Booleans

Booleans

print(10 > 9)

print(10 == 9)

print(10 < 9)

bool("abc")

bool(123)

bool(["apple", "cherry", "banana"])

will return True

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 37 / 69

Python typing system Booleans

Booleans

bool(False)

bool(None)

bool(0)

bool("")

bool(())

bool([])

bool({})

will return False

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 38 / 69

Python typing system Lists

Lists

mylist = ["alfa", "beta", "gamma"]

print(len(thislist))

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

list4 = ["abc", 34, True, 40, "male"]

nextlist = list(("alfa", "beta", "gamma"))

print(nextlist[1]) # beta

print(nextlist[-1]) # gamma

print(nextlist[1:2]) # ["beta", "gamma"]

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 39 / 69

Python typing system Lists

Accessing lists

thislist = ["apple", "banana", "cherry"]

thislist[1] = "blackcurrant"

print(thislist)

islist = ["apple", "banana", "cherry", "orange",

thislist[1:3] = ["blackcurrant", "watermelon"]

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist[1:2] = ["blackcurrant", "watermelon"]

print(thislist)

thislist = ["apple", "banana", "cherry"]PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 40 / 69

Python typing system Lists

Adding items to lists

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

print(thislist)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 41 / 69

Python typing system Lists

Removing items from lists

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

thislist = ["apple", "banana", "cherry"]PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 42 / 69

Python typing system Lists

Iterating lists

thislist = ["apple", "banana", "cherry"]

for x in thislist:

print(x)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 43 / 69

Python typing system Tuples

Tuples

mytuple = ("apple", "banana", "cherry")

print(mytuple[1])

print(mytuple[-1])

print(mytuple[1:2])

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 44 / 69

Python typing system Tuples

Updating tuples

x = ("apple", "banana", "cherry")

y = list(x)

y[1] = "kiwi"

x = tuple(y)

print(x)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 45 / 69

Python typing system Tuples

Unpacking tuples

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)

print(yellow)

print(red)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 46 / 69

Python typing system Tuples

Looping tuples

thistuple = ("apple", "banana", "cherry")

for x in thistuple:

print(x)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 47 / 69

Python typing system Sets

Sets

myset = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

set4 = {"abc", 34, True, 40, "male"}

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 48 / 69

Python typing system Sets

Set Methods

add clear copy

difference

discard intersection

isdisjoint issubset issupperset

pop remove

union update

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 49 / 69

Python typing system Dictionaries

Dictionary

thisdict =

{

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

print(thisdict["brand"])

thisdict["color"] = "red"

thisdict.update({"color": "blue"})

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 50 / 69

Python typing system Dictionaries

Iterating dictionaries

for x in thisdict:

print(thisdict[x])

for x in thisdict.values():

print(x)

for x in thisdict.keys():

print(x)

for x, y in thisdict.items():

print(x, y)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 51 / 69

Lisp Typing System

PLs Typing Systems
1 C typing system

Predefined types
Enumeration type constants
Structured data types
Pointers
Recursive structures
Type equivalence

2 Python typing system
Predefined types
Strings
Booleans
Lists
Tuples
SetsPLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 52 / 69

Lisp Typing System

Lisp Typing System

Includes data types

There is no variable in the classic sense

Variables are replaced by symbolic atoms or symbols

Symbols have a name which is an array of letters
and do not represent a number

Lisp is designed for symbolic computation

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 53 / 69

Lisp Typing System

Lisp Typing System

In imperative languages
To a variable we assign a value of a certain type
Referring the value is made through the variable name

In Lisp
A symbol is a name attached to an entity for a certain
amount of time
Data type does not refer to symbols but to the bound
values
A symbol can represent at different times different values
of different types

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 54 / 69

Lisp Typing System

Lisp Typing System

From the implementation point of view
Dynamic linking of several types to the very same
variables is possible
Because Lisp variables are references (pointers) to
entities which can be of several types

In imperative languages
Variable is a name given to a memory location
With fixed dimension
Equal with the variable type

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 55 / 69

Lisp Typing System

Binding a value to an atom

Replaces the assignment operation

Implemented by functional forms setq and setf

> (setq x 10)

10

> (setq x ‘Lisp)

LISP

> (setq x ‘(a b c))

(A B C)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 56 / 69

Lisp Typing System

Lisp Typing System

The type is specific to the object represented by the
symbol

But not the symbol itself

It is the case for weak typing PLs

At compile time is impossible to say what is the
type of a variable

Dynamic processing facilities are favored instead of
type correspondence verifications during compile
time

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 57 / 69

Lisp Typing System Simple predefined types

Predefined simple types

Numerical
Integer

Fixnum
Bignum

Ratio
10/3
10/2
10/4
(* 5/2 5/3)
25/6

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 58 / 69

Lisp Typing System Simple predefined types

Predefined simple types

Numerical (continued)
float

short-float
single-float
double-float
long-float

complex
a+bi -> #c(a b)
> (sqrt -1)
#c(0 1)
> (* #c(01) #c(0 2))
-2

Nonnumerical
character

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 59 / 69

Lisp Typing System Lists

Lists

Non-atomic compound expressions are lists

(red yellow blue)

(1 2 -4 1.5)

((red yellow blue) (1 2 -4 1.5))

The organization is linear, sequential

Implemented as dynamic data structures
In imperative languages

Dynamic allocation and deallocation of list elements
Done manually by the programmer

In Lisp allocation and deallocation is done
automatically

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 60 / 69

Lisp Typing System Lists

Lists

Adding an element into a list using cons
(cons ‘d ‘(a b c))
(d a b c)

Dynamic allocation for d

Linking d into the list

Are invisible operations for the programmer
Two fields

car – pointer towards the first element of the list
cdr – pointer to the rest of the elements of the list

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 61 / 69

Lisp Typing System Vectors and matrixes

Vectors and matrixes

> (setq mat (make-array

‘(2 3 2):initial-contents

‘(((1 2)(3 4)(5 6)) ((7 8)(9 10)(11 12)))))

#3A(((1 2)(3 4)(5 6)((7 8)(9 10)(11 12))))

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 62 / 69

Lisp Typing System Vectors and matrixes

Vectors and matrixes

> (setq vect (vector 0 1 2 3 4 5 6 7 8 9))

#(0 1 2 3 4 5 6 7 8)

> (aref mat 0 0 0)

1

> (aref mat 1 2 0)

11

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 63 / 69

Lisp Typing System Vectors and bit matrixes

Bit vectors and bit matrixes

> (setq matbits (make-array ‘(2 3 2)

initial-element 0:element-type ‘bit))

#3A ((#*00 #*00 #*00) (#*00 #*00 #*00))

> (setq (aref matbits 1 2 0) 1))

1

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 64 / 69

Lisp Typing System Vectors and bit matrixes

Bit vectors and bit matrixes

> (setq vbits #*01010101)

#* 01010101

> (bit-not vbits)

#* 10101010

bit-not

bit-and

bit-ior, bit-xor

bit-eqv - equivalence

bit-orcl - implication
PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 65 / 69

Lisp Typing System Character strings

Strings

Subtype of vectors

>(length "abcd")

4

>(aref "abcd" 2)

#\c

String comparison

> (string = "abcd" "abcd")

T

> (string < "abcd" "abdd")

2

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 66 / 69

Lisp Typing System Character strings

Strings

Transforming an atom into a string

> (string ’abcd)

"ABCD"

Searching a substring in a string

> (search "cd" "abcd")

2

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 67 / 69

Lisp Typing System Type equivalence

Type equivalence. Subtypes

Lisp programmer must no be aware of data types

In older versions types did not exist

Type dynamic linking avoids static checking

The only checking is made when an operator
executes its operands >(+ 1 "5")

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 68 / 69

Lisp Typing System Subtypes

Subtypes

Numerical types
rational

integer:fixnum,bignum
ratio

float
short-float
single-float
double-float
long-float

complex

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 69 / 69

Lisp Typing System Subtypes

Subtypes

Vector types
vector

string
bit-vector

Operators
type-of 1 arg

type-p 2 args

subtype-p 2 args

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 70 / 69

Lisp Typing System Subtypes

Types example

> (type-of 1)

FIXNUM

> (type-of #*01000111)

(SIMPLE-BIT-VECTOR 8)

> (type-of #\a)

CHARACTER

> (type-of "abcd")

SIMPLE-STRING

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 71 / 69

Lisp Typing System Subtypes

Subtypes example

> (typep 1 ‘number)

T

> (typep 1 ‘integer)

T

> (typep 1 ‘fixnum)

T

> (typep 1 ‘bignum)

NIL

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 72 / 69

Lisp Typing System Subtypes

Subtypes example

> (typep (a b c) ‘sequence)

T

> (typep (a b c) ‘list)

T

> (subtypep ‘integer ‘number)

T

> (subtypep ‘array ‘sequence)

NIL

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 73 / 69

Lisp Typing System Subtypes

Bibliography

1 Brian Kernighan, Dennis Ritchie, C Programming
Language, second edition, Prentice Hall, 1978.

2 Carlo Ghezzi, Mehdi Jarayeri – Programming
Languages, John Wiley, 1987.

3 Horia Ciocarlie – Universul limbajelor de
programare, editia 2-a, editura Orizonturi
Universitare, Timisoara, 2013.

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 74 / 69

	C typing system
	Predefined types
	Enumeration type constants
	Structured data types
	Pointers
	Recursive structures
	Type equivalence

	Python typing system
	Predefined types
	Strings
	Booleans
	Lists
	Tuples
	Sets
	Dictionaries

	Lisp Typing System
	Simple predefined types
	Lists
	Vectors and matrixes
	Vectors and bit matrixes
	Character strings
	Type equivalence
	Subtypes

