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C typing system

The C typing system

Predefined types

Enumeration constants
Structured data types

Array
Structure
Union

Pointers

Recursive structures

Type equivalence
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C typing system Predefined types

Predefined types

char – a byte for the local set of characters
int – the set of integers on the host machine

short int usually on 16 bits
long int on at least 32 bits

length(short) 16 bits

length(short)<= length(int)<=length(long)

signed and unsigned can be applied to char or int

unsigned char 0..255

signed char -128..+127

float, double

<limits.h> <float.h>
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C typing system Enumeration type constants

Enumeration constants

enum boolean {NO,YES};

enum days {MO=1,TU,WE,THU,FRI,SAT,SUN};
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C typing system Enumeration type constants

Arrays

General form
element type array name[constant expression]
Array size > 0

Example
v[10] – 10 integer array
Indexes start at zero
First element v[0]
Last element v[9]

Initialization
x[]={1,2,3};

the array size must be known at compile time
C arrays are static arrays
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C typing system Enumeration type constants

Multidimensional arrays

Is an array of arrays
int mat[10][10]

Matrix with 10 lines and 10 columns
The element at (i,j) will be accessed like mat[i][j] and
not mat[i,j] like in other PLs

array formal parameters can be declared
incompletely without specifying the first dimension

int f(char l[],int m[][10]);
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C typing system Enumeration type constants

Multidimensional arrays

The effective dimensions of arrays can be specified
at function call time
Functions can have a greater degree of generality
than Pascal where

formal parameter size and actual parameter size must be
equal
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C typing system Structured data types

Structures

Implement in C the Cartesian products

struct point

{

int x;

int y;

};

can be copied by an assignment

struct point origin={0,0};
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C typing system Structured data types

Structures

Field access
struct point p;

p.x or p.y

Can be returned by functions
struct point f(int x, int y) { }

Can be nested
struct rectangle

{

struct point p1;

struct point p2;

};

The access can be nested
struct rectangle r;PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 12 / 69



C typing system Structured data types

Unions

Implement variable reunions

union

{

int i;

float f;

char c;

} u;

u can be an integer or a float or a char
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C typing system Structured data types

Unions

Selection
u.i, u.f, u.c

Can be nested with other unions, structures or
arrays
In memory representations

all have a a zero memory offset from the starting address
At one moment only one representation is available
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C typing system Structured data types

Unions

No type checking is made

All responsibility is on programmers shoulder

Selecting a bad variant could cause severe
programming errors

The permitted operations are those from the sets

Can be initialized with a value of the first variant
type (integer for u)
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C typing system Pointers

Pointers

a pointer declaration must use the referred type
int x=1, y;
int *p; /* p is a pointer to an integer */
void *p1; /* can store any type of pointer */

May store object addresses
p=&x;

To access the object referred by the pointer
is called de-referentiation
y=*p; /* y gets value 1*/
*p=0; /* x gets value 0 */

Synonyms can be created with the known
consequences
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C typing system Pointers

Pointers

Allow direct access to an argument memory location

void exchange1(int x, int y) /*wrong*/

{

int aux;

aux=x; x=y; y=aux;

}

exchange1(a,b);

/*exchanges only copies of a and b*/

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 17 / 69



C typing system Pointers

Pointers

void exchange2(int *x, int *y)

{

int aux;

aux=*x; *x=*y; *y=aux;

}

exchange2(&a,&b); /*correct call*/

/*exchanges the values of a and b*/
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C typing system Pointers

Pointers

can be used together with arrays

int a[10];

int *pa;}

pa=&a[0];

/*pa will hold the address of a[0]*/

The value of an array is also the value of the first
element of the array

a and pa have the same values
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C typing system Pointers

Pointers

*(pa+i) is the content of a[i]

*(pa+i) is equivalent with a[i]

(pa+i) is equivalent with &a[i]
When an array is transmitted to a function

Only the first element address is transmitted
The formal parameter is actually a pointer
Acts as a variable which contains an address

int f(char s[]) { . . . }

int f(char *s) { . . . }

The two forms are equivalent
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C typing system Pointers

Pointer arithmetic

Allowed operations
Assigning pointers of the same type
Adding or subtracting a pointer with an integer
Subtracting or comparing two pointers referring the
elements of the same array
Assigning or comparing with NULL (zero) or 0
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C typing system Pointers

Theoretical type compatibilities

Illegal operations
Adding two pointers
Multiplying or dividing pointers
Bit shifting or mask application
Adding pointers with real values
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C typing system Pointers

Pointers to functions

Allowed in C

Can be assigned

Can be set in arrays

Can be send as parameters to functions

Can be returned as values from functions
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C typing system Pointers

Dynamic memory allocation and relocation

Dynamic allocation of anonymous objects of
specified size

malloc(...);

calloc(...);

realloc(...);

Releases the allocate memory
free()

Memory releases can create fake references
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C typing system Recursive structures

Recursive structures

Based on pointers

Allow describing lists or trees

struct node

{

type info;

struct node *left;

struct node *right;

}

recursive structures must use pointers

a type can not contain its own instantiation
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C typing system Type equivalence

Type equivalence

Based on structural equivalence
Exceptions

struct
union

are different types even they have the same structure

type conversions are allowed through casting

(type) expression
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Python typing system

PLs Typing Systems
1 C typing system

Predefined types
Enumeration type constants
Structured data types
Pointers
Recursive structures
Type equivalence

2 Python typing system
Predefined types
Strings
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Python typing system Predefined types

Python Typing System

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType
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Python typing system Predefined types

Predefined types

x = 5

print(type(x))

<class ’int’>

---

x = "Hello World" <class ’str’>

x = 20 <class ’int’>

x = 20.5 <class ’float’>

x = 1j <class ’complex’>

x = ["apple", "banana", "cherry"] <class ’list’>

x = ("apple", "banana", "cherry") <class ’tuple’>

x = range(6) <class ’range’>
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Python typing system Predefined types

Predefined types

x = {"name" : "John", "age" : 36} <class ’dict’>

x = {"apple", "banana", "cherry"} <class ’set’>

x = frozenset({"apple", "banana", "cherry"})

<class ’frozenset’>

x = True <class ’bool’>

x = b"Hello" <class ’bytes’>

x = bytearray(5) <class ’bytearray’>

x = memoryview(bytes(5)) <class ’memoryview’>

x = None <class ’NoneType’>
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Python typing system Predefined types

Casting

# integers

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

# floats

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2
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Python typing system Predefined types

Casting

# strings

x = str("fcpl") # x will be ’fcpl’

y = str(2) # y will be ’2’

z = str(3.0) # z will be ’3.0’
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Python typing system Strings

Strings

print("Hello FCPL")

print(’Hello FCPL’)

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 33 / 69



Python typing system Strings

Multiline Strings

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

a = ’’’Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.’’’
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Python typing system Strings

Slicing Strings

b = "Hello, World!"

print(b[2:5])

#llo

print(b[:5])

#Hello

print(b[2:])

#llo, World!

print(b[-5:-2])

#orl
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Python typing system Strings

Modifying Strings

s=" Hello FCPL "

s.upper()

s.lower()

s.strip()

s.replace("H", "J")

s.split(",")

a="Alfa"

b="Romeo"

c=a+" "+b
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Python typing system Booleans

Booleans

print(10 > 9)

print(10 == 9)

print(10 < 9)

bool("abc")

bool(123)

bool(["apple", "cherry", "banana"])

# will return True
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Python typing system Booleans

Booleans

bool(False)

bool(None)

bool(0)

bool("")

bool(())

bool([])

bool({})

# will return False
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Python typing system Lists

Lists

mylist = ["alfa", "beta", "gamma"]

print(len(thislist))

list2 = [1, 5, 7, 9, 3]

list3 = [True, False, False]

list4 = ["abc", 34, True, 40, "male"]

nextlist = list(("alfa", "beta", "gamma"))

print(nextlist[1]) # beta

print(nextlist[-1]) # gamma

print(nextlist[1:2]) # ["beta", "gamma"]
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Python typing system Lists

Accessing lists

thislist = ["apple", "banana", "cherry"]

thislist[1] = "blackcurrant"

print(thislist)

islist = ["apple", "banana", "cherry", "orange",

thislist[1:3] = ["blackcurrant", "watermelon"]

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist[1:2] = ["blackcurrant", "watermelon"]

print(thislist)
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Python typing system Lists

Adding items to lists

thislist = ["apple", "banana", "cherry"]

thislist.append("orange")

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.insert(1, "orange")

print(thislist)
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Python typing system Lists

Removing items from lists

thislist = ["apple", "banana", "cherry"]

thislist.remove("banana")

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.pop(1)

print(thislist)

thislist = ["apple", "banana", "cherry"]

thislist.pop()

print(thislist)

thislist = ["apple", "banana", "cherry"]PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 42 / 69



Python typing system Lists

Iterating lists

thislist = ["apple", "banana", "cherry"]

for x in thislist:

print(x)
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Python typing system Tuples

Tuples

mytuple = ("apple", "banana", "cherry")

print(mytuple[1])

print(mytuple[-1])

print(mytuple[1:2])
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Python typing system Tuples

Updating tuples

x = ("apple", "banana", "cherry")

y = list(x)

y[1] = "kiwi"

x = tuple(y)

print(x)
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Python typing system Tuples

Unpacking tuples

fruits = ("apple", "banana", "cherry")

(green, yellow, red) = fruits

print(green)

print(yellow)

print(red)
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Python typing system Tuples

Looping tuples

thistuple = ("apple", "banana", "cherry")

for x in thistuple:

print(x)
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Python typing system Sets

Sets

myset = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

set4 = {"abc", 34, True, 40, "male"}
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Python typing system Sets

Set Methods

add clear copy

difference

discard intersection

isdisjoint issubset issupperset

pop remove

union update
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Python typing system Dictionaries

Dictionary

thisdict =

{

"brand": "Ford",

"model": "Mustang",

"year": 1964

}

print(thisdict["brand"])

thisdict["color"] = "red"

thisdict.update({"color": "blue"})
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Python typing system Dictionaries

Iterating dictionaries

for x in thisdict:

print(thisdict[x])

for x in thisdict.values():

print(x)

for x in thisdict.keys():

print(x)

for x, y in thisdict.items():

print(x, y)
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Lisp Typing System

PLs Typing Systems
1 C typing system

Predefined types
Enumeration type constants
Structured data types
Pointers
Recursive structures
Type equivalence

2 Python typing system
Predefined types
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Lisp Typing System

Lisp Typing System

Includes data types

There is no variable in the classic sense

Variables are replaced by symbolic atoms or symbols

Symbols have a name which is an array of letters
and do not represent a number

Lisp is designed for symbolic computation
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Lisp Typing System

Lisp Typing System

In imperative languages
To a variable we assign a value of a certain type
Referring the value is made through the variable name

In Lisp
A symbol is a name attached to an entity for a certain
amount of time
Data type does not refer to symbols but to the bound
values
A symbol can represent at different times different values
of different types
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Lisp Typing System

Lisp Typing System

From the implementation point of view
Dynamic linking of several types to the very same
variables is possible
Because Lisp variables are references (pointers) to
entities which can be of several types

In imperative languages
Variable is a name given to a memory location
With fixed dimension
Equal with the variable type

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 55 / 69



Lisp Typing System

Binding a value to an atom

Replaces the assignment operation

Implemented by functional forms setq and setf

> (setq x 10)

10

> (setq x ‘Lisp)

LISP

> (setq x ‘(a b c))

(A B C)
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Lisp Typing System

Lisp Typing System

The type is specific to the object represented by the
symbol

But not the symbol itself

It is the case for weak typing PLs

At compile time is impossible to say what is the
type of a variable

Dynamic processing facilities are favored instead of
type correspondence verifications during compile
time
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Lisp Typing System Simple predefined types

Predefined simple types

Numerical
Integer

Fixnum
Bignum

Ratio
10/3
10/2
10/4
(* 5/2 5/3)
25/6
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Lisp Typing System Simple predefined types

Predefined simple types

Numerical (continued)
float

short-float
single-float
double-float
long-float

complex
a+bi -> #c(a b)
> (sqrt -1)
#c(0 1)
> (* #c(01) #c(0 2))
-2

Nonnumerical
character
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Lisp Typing System Lists

Lists

Non-atomic compound expressions are lists

(red yellow blue)

(1 2 -4 1.5)

((red yellow blue) (1 2 -4 1.5))

The organization is linear, sequential

Implemented as dynamic data structures
In imperative languages

Dynamic allocation and deallocation of list elements
Done manually by the programmer

In Lisp allocation and deallocation is done
automatically
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Lisp Typing System Lists

Lists

Adding an element into a list using cons
(cons ‘d ‘(a b c))
(d a b c)

Dynamic allocation for d

Linking d into the list

Are invisible operations for the programmer
Two fields

car – pointer towards the first element of the list
cdr – pointer to the rest of the elements of the list
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Lisp Typing System Vectors and matrixes

Vectors and matrixes

> (setq mat (make-array

‘(2 3 2):initial-contents

‘(((1 2)(3 4)(5 6)) ((7 8)(9 10)(11 12)))))

#3A(((1 2)(3 4)(5 6)((7 8)(9 10)(11 12))))
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Lisp Typing System Vectors and matrixes

Vectors and matrixes

> (setq vect (vector 0 1 2 3 4 5 6 7 8 9))

#(0 1 2 3 4 5 6 7 8)

> (aref mat 0 0 0)

1

> (aref mat 1 2 0)

11
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Lisp Typing System Vectors and bit matrixes

Bit vectors and bit matrixes

> (setq matbits (make-array ‘(2 3 2)

initial-element 0:element-type ‘bit))

#3A ((#*00 #*00 #*00) (#*00 #*00 #*00))

> (setq (aref matbits 1 2 0) 1))

1
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Lisp Typing System Vectors and bit matrixes

Bit vectors and bit matrixes

> (setq vbits #*01010101)

#* 01010101

> (bit-not vbits)

#* 10101010

bit-not

bit-and

bit-ior, bit-xor

bit-eqv - equivalence

bit-orcl - implication
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Lisp Typing System Character strings

Strings

Subtype of vectors

>(length "abcd")

4

>(aref "abcd" 2)

#\c

String comparison

> (string = "abcd" "abcd")

T

> (string < "abcd" "abdd")

2
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Lisp Typing System Character strings

Strings

Transforming an atom into a string

> (string ’abcd)

"ABCD"

Searching a substring in a string

> (search "cd" "abcd")

2

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 67 / 69



Lisp Typing System Type equivalence

Type equivalence. Subtypes

Lisp programmer must no be aware of data types

In older versions types did not exist

Type dynamic linking avoids static checking

The only checking is made when an operator
executes its operands >(+ 1 "5")
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Subtypes

Numerical types
rational

integer:fixnum,bignum
ratio

float
short-float
single-float
double-float
long-float

complex

PLs Typing Systems Lecture 08 conf. dr. ing. Ciprian-Bogdan ChirilaFundamentals of Programming Languages November 15, 2022 69 / 69



Lisp Typing System Subtypes

Subtypes

Vector types
vector

string
bit-vector

Operators
type-of 1 arg

type-p 2 args

subtype-p 2 args
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Types example

> (type-of 1)

FIXNUM

> (type-of #*01000111)

(SIMPLE-BIT-VECTOR 8)

> (type-of #\a)

CHARACTER

> (type-of "abcd")

SIMPLE-STRING
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Subtypes example

> (typep 1 ‘number)

T

> (typep 1 ‘integer)

T

> (typep 1 ‘fixnum)

T

> (typep 1 ‘bignum)

NIL
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Subtypes example

> (typep (a b c) ‘sequence)

T

> (typep (a b c) ‘list)

T

> (subtypep ‘integer ‘number)

T

> (subtypep ‘array ‘sequence)

NIL
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